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Abstract—The study of birdsong has implications in a num-
ber of biological and conservational applications. However, the
analysis of bird vocalisations in the natural habitat is still largely
a laborious task. One of the bottle necks is the segmentation of
bird vocalisations into individual syllables. Simple segmentation
in time domain proves difficult because of overlapping signals
over different frequency bands. The common approach is to
convert audio recordings into a spectrogram and apply image
processing techniques to pick out the signal of interest. We
examine several methods that have been proposed recently to do
just this and find that they are inadequate to deal with harmonic
vocalisations. We propose a method that segments syllables by
looking for the fundamental frequency first then works its way
up in the frequency axis to find other harmonics if they exist. We
evaluate our method against another popular method and find
that the proposed method can segment correctly more than 70%
the number of syllables, more than twice that of the method we
are comparing to.
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mentation, Fundamental Frequency, Extraction

I. INTRODUCTION

The study of birdsong has been an area of research interest
for a long time. It has applications as diverse as studying
biology and physiology of birds, the evolution of birdsong,
and hence birds, and assisting people to recognise the birds
that they encounter [1]-[3]. Audio recordings of birdsong are
also frequently used for running bird counting surveys in
conservation efforts to determine bird population densities, as
well as a general metric of ecosystem health [4]. These surveys
can be very laborious tasks, often requiring expert knowledge
to identify the particular species.

Bird songs and calls are thought to be hierarchical structures
that can be divided into different levels of complexity [5]. The
lowest level contains vocal units that are usually referred to as
syllables or elements. There is no formal definition of these
two terms and they can sometimes be used to represent the
same unit of bird vocalisation, depending on the length of
the unit. In this paper, we use the definition of a syllable as
defined by Ranjard et. al. [6]: “a syllable is part of a song
characterised by a high value of autocorrelation of the signal
and with a continuity in the fundamental frequency”. Multiple
syllables that follow a particular order form a phrase and a
song can contain multiple phrases. Figure 1 shows the structure
of a typical song of New Zealand’s North Island saddleback
(Philesturnus rufusater) using a spectrogram.
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Fig. 1. Spectrogram of a typical song of Philesturnus rufusater showing

multiple level structure. (Except of Xeno-canto Media ID #114331 with noise
removed for better clarity). The black line indicates the duration of the song,
which consists of 6 phrases whose durations are indicated by the red lines.
The blue lines indicate the duration of a syllable.

Segmentation of birdsong into individual syllables is the first
step of the analysis. Even though some domain-specific soft-
ware (e.g. Raven [7], Luscinia [8]) exist to make this process
easier, it is still a very laborious manual task. Performing it
on large scale is essentially impractical, hence automating the
segmentation in a robust manner is a great first step towards
computer-assisted analysis of birdsong that can be performed
on large data-sets.

II. PROBLEM OVERVIEW

The study of birdsongs starts with recording the vocalisation
of birds. This can rarely be done in isolation, especially
when making recordings in the natural habitat. The recordings
contain not only the sound of the intended target individual
but also any combination of: other individuals (possibly over-
lapping in time and/or frequency with the target), noise from
other animals including humans, environmental noise (e.g.
wind, water, trees, man-made noise) and electronic noise in the
recorder. Parts of the audio that contains only birdsong need
to be segmented from the background, as well as individual
syllables need to be segmented from each other before they
can be used as input for any analysis.

Birds can create different types of sound, but typically they
can be grouped into two: noise-like and pure-tone. The noise-
like sounds (e.g. booming sound, cough, wheeze of kakapo,
tui) are basically wide-band noise. Pure-tone sounds have
concentrated energy at a single frequency that can be constant
or vary over time (in frequency).



Pure-tone syllables are generated by vibration of the syrinx,
which often creates accompanying harmonics. Some bird
species suppress the harmonics (to emphasise the fundamental
frequency) to the point where they are indistinguishable from
the noise floor and some do not or at least not as much. These
are the kind of syllables that we are interested in and it is
highly desirable to identify the fundamental and all of the
present harmonics as a single syllable.

A. Previous Work

A survey of the studies of machine recognition of UK
birdsongs [9] showed that several methods exist for automatic
segmentation of songs into syllables. The authors found that
a number of studies of bird recognition on small scale still
rely on manual segmentation, even though the authors indicate
that automatic segmentation is their final aim. Those that do
use automatic methods, mostly utilise time-based segmentation
with the assumption of non-overlapping syllables that can also
be easily distinguished from any unwanted background noises.
These methods range from simply finding the dip in energy
[10]-[13] to more elaborate methods like that of Somervuo et.
al. [14] that iteratively finds the best threshold for segmenting
the signal envelope. Unfortunately, this type of segmentation
only works only in situations with little or no background
noise and cannot cater for sounds overlapping in time.

The problem of syllable segmentation in the presence
of noise cannot be solved effectively in the time domain.
However, if the target vocalisation and the background noise
occupy different space in the frequency domain, it may be
possible to separate them. The Short-Term Fourier Trans-
form (STFT) can be used to transform the signal into the
frequency domain as a function of both time and frequency
(spectrogram). Harma [15] identifies peak frequency ridges
in the spectrogram that correspond to syllable fundamental
frequencies. His data does not contain harmonics and the
method would struggle to recognise these (as they are more
affected by noise than the strong fundamental) or link them
with the corresponding fundamental frequency.

Another interesting approach to the problem is to treat the
result of STFT as an image, where the intensity of each
time-frequency unit is expressed as a greyscale value of the
corresponding pixel. Pure-tone birdsong syllables are visible
on the spectrogram as a series of blurred lines/curves with the
fundamental at the bottom and harmonics stacked above (see
Figure 1 for an example). The amount of blurring can vary,
as it depends on the size of the main lobe of the windowing
function used in STFT. Image processing techniques can now
be applied to segment these ’blobs’ from the background.

Methods that find syllables as two-dimensional objects on
the spectrogram include [16], [17] and [18], [19]. The former
two methods are machine-learning based, using manually
segmented binary masks as the training data. The last method
is the refined version of the second to last, which is the earliest
method we encountered that used image processing to segment
birdsong spectrogram. This method, called “Median Clipping”
by the authors, applies the following steps to the spectrogram:
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Fig. 2. Segmentation of syllables with multiple harmonics. (a) Correct
segmentation resulting in three syllables (from 0.6 to 1.15 seconds, from 1.05
to 1.7 seconds and from 1.8 to 2.2 second). (b) Segmentation by Median
Clipping resulting in each harmonic falsely recognised as one individual
syllable.

1) Preprocessing (including Gaussian smoothing)
2) Binary thresholding according to Equation 1

Sr.c > 3 x max(median(S,), median(S;)) (1)

Where S, . denotes a pixel value in the spectrogram at
row r and column c that is being thresholded, S, is a
row of spectrogram pixel values at row r, S, is a column
of spectrogram pixel values at column ¢

3) Morphological removal of spurious pixels and small
objects

4) Blob detection (after filling holes)

The novelty of Median Clipping is that it uses the median
value of a row or a column as a pseudo-adaptive threshold for
each pixel, so that the algorithm can be very fast yet effective
in picking out the signal that stands out in comparison with the
noise profile at each particular time point and frequency band.
The blobs segmented out using this method have been used
directly as templates to perform template matching on audio
recordings with unknown species to detect what species are
present in the recordings, which proved to be quite a successful
approach, winning a number of competitions of recognising
bird species in audio recordings (MLSP, NISP4B, Bird CLEF
2013, 2014, 2015).

The above method works well at segmenting out pockets
of high energy in the time-frequency space (generally sylla-
bles), however, it is also prone to segmenting out blobs that
correspond to nothing but noise and breaking whole syllables
into multiple blobs. It also does not deal with harmonic
syllables and segments each harmonic separately, frequently
into smaller and smaller blobs for higher harmonics as these do
not carry as much power as the fundamental. Figure 2 shows
one typical case of this scenario. We found this method good
at dealing with narrow-band noise that frequently presents in
the recordings, but does not segment the syllables correctly,
either breaking up one syllable into multiple blobs or linking
multiple syllables into a single blob. This latter result is mostly
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Fig. 3. Typical result of Median Clipping. (a) Original spectrogram. (b) Binary
mask acquired after applying median clipping.

due to reverberations present in the recordings that blur the
syllables out along the time axis at the end of vocalisation
and effectively creating an overlap with the next syllable.

Figure 3 shows a typical result of Median Clipping when
applied to noisy recordings of birdsongs with harmonics.
Narrow-band noise (from approx. SkHz to approx. 7kHz) is
effectively filtered out. However, impulse noise (high vertical
pillars from the 4" second to the 6™ second) still remains.
Almost all low-frequency harmonics of the syllables vocalised
from the 2" second to the 7™ second are linked together to
form a big blob.

We endeavour to solve two important problems that existing
methods do not address: robustly segment syllables in close
proximity (that may be overlapping due to reverberation or
multiple simultaneous vocalisations) and segment the funda-
mental frequency and its harmonics as a single unit.

III. PROPOSED METHOD

Our method is based on detecting the fundamental fre-
quency of each syllable first, as it is often much stronger
than the harmonics and can be localised in time-frequency
domain with higher certainty. Once the fundamental has been
identified, a search for the harmonics that should be associated
with it can be performed. Because the region of interest (ROI)
for each harmonic can be accurately determined from the
location of the fundamental, even weak harmonics that are
partially blend with the background noise can be identified as
such and associated as part of a syllable, rather than a separate
vocalisation. Next, we describe each step in more detail.

A. Spectrogram

The first step is to convert the time-domain recording into
a spectrogram by using the Short-Time Fourier Transform
(STFT) with the following parameters: Hamming window of
size 512, 50% overlap, nFFT (number of FFT points) is 512.
This creates spectrograms with the resolution of 5.8ms per
time sample and 86 Hz per frequency bin (e.g. each pixel
in the spectrogram contains the spectral power density over

5.8ms and between two frequencies that are 86 Hz apart).
Since most bird vocalisations occur above 860 Hz, we discard
the range between DC and this frequency (11 bottom rows of
the spectrogram).

B. Segmentation and Identifying the Fundamental

Segmentation consists of two steps. The first step is a
binary thresholding similar to step 2 of Median Clipping that
produces a mask that segments all areas of interest from the
background, even in presence of wide- or narrow-band noise
(see Figure 3(b) for example of the result).

The second step is designed to separate the blobs in the
mask produced by step one into separate syllables and only
keep the strongest signal, corresponding to the fundamental. A
second binary mask M; ; is produced by applying a non-linear
filter in a moving window as following:

1, S;; > Pso(Wy (S
M, — e 50 (We,n(S5)) 2
’ 0, otherwise

Where P;(f) is the i'" percentile of f, W, 1,(S) is the pixel
values of a patch of S inside a rectangular window W of size
w X h. (In our implementation, W is 64 frequency bins and
h is 100 time samples). The window W and is slid across
the spectrogram in both directions with 50% overlap. A pixel
must pass the thresholds of all windows that it falls into in
order to enable the corresponding pixel in this second binary
mask.

The two masks (from step one and two) are AN Ded
together to produce the final binary mask that we found to
work well to separate syllables from each other and also to
filter out the harmonics, leaving mostly the regions of interest
containing the fundamental frequency of each syllable.

However, some blobs in the final mask still correspond to
harmonics or parts of the harmonics and/or background noise.
Some post-processing is applied to remove as many as possible
of these. The regions of interest in the spectrogram that
correspond to blobs in the mask are assessed by calculating
the average intensity of each region and removing those that
are below a certain threshold. We determined a good value of
this threshold heuristically as 10~6. This value corresponds to
a sound pressure level of 34dB, which is within the levels of
living room ambient noise, according to the formula:

Pil;(f ) > 3)

PSDdB(f) =10 x lOglo<
ref

Where P,y is the standard reference sound pressure of 20
micropascals in air. This procedure is effective in removing
large chunks of noisy pixels as well as most of the harmonics
while keeping the fundamentals. In addition, we remove any
blobs that are shorter than 50 ms (9 pixels) or have a total
area less than 20 pixels.

We assume that the remaining blobs are regions of interest
where the true syllable fundamental is located. For each blob,
we find the ridge of peak values at each time point as an



approximation to the fundamental frequency as a function of
time and proceed to the next part of locating harmonics.

C. Identifying harmonics

For each of the fundamental frequency (of syllables identi-
fied in the previous part), we perform a search for correspond-
ing harmonics. We describe the process of searching for the
second harmonic here, but the process is the same for other
harmonics, except for the integer frequency multiplier.

First, a region of interest in the spectrogram is identified in
the following way. Consider the diagram in Figure 4, where
the bottom blob is the result of segmentation, described earlier
and the black solid line denotes the value of fundamental
frequency at each point in time, approximated by the ridge
of the spectrogram region within the blob. The fundamental
frequency at each time point is multiplied by 2, resulting in
the approximate location of the second harmonic (black dashed
line). A region of interest around this curve is identified by
extending it up and down in frequency at each time point by
the same amount as the fundamental frequency blob extends
from its peak (solid line). This is to account for the blurring of
the frequency peak in the process of windowing when STFT
is computed that effectively results in limited frequency-axis
resolution.

Next, we test the region of interest by comparing its mean
intensity with the mean intensity of the surrounding area to
determine if there is meaningful signal that stands out above
the noise floor. The surrounding area is defined as the area of
the region of interest expanded in all directions by 3 pixels
but not including the region of interest itself (see the grey
striped region in Figure 4). If the region of interest’s mean
value is 4 times higher than the mean of the surrounding area,
we consider the second harmonic to be present within the
ROI. However, we only label the pixels within the region of
interest as the found second harmonic that are at least 4 times
larger than the mean of the surrounding region. These pixels
are also removed from our segmentation mask (if still happen
to be present there) to prevent them from being labelled as
syllables on their own accord. This is why it is important
to perform this operation of searching for harmonics starting
from blobs located at the lowest frequency first. Then it does
not matter if some harmonics were not completely removed in
the segmentation step — they will be identified as harmonics
here and removed from the mask.

This process is then repeated until the 6" harmonic. We
find it unnecessary to proceed any further since harmonics of
higher order have much lower energy and are almost always
below the noise floor. Then we move on to the next lowest
fundamental frequency blob (unless it has been removed from
the mask in the above process because it was identified as a
harmonic of one of the previous syllables) and perform the
search for harmonics all over again. As the result, we have all
syllables identified with their harmonics and segmented from
the background and other syllables.

N
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Fig. 4. Illustration of the process of locating a harmonic. The green blob is
where the fundamental frequency is located. The solid line is the estimate of
the fundamental frequency which is projected onto the theoretical location of
27 harmonics (dashed line) with the region of interest (red blob) reconstructed
from the thickness of the green blob. The surrounding area (grey blob with
stripe) is extended from the region of interest.

D. Tuning parameters

Like median clipping, our method is designed with noise-
robustness in mind. However, there are several parameters that
can be tuned to adapt to specific situations where the default
values (as we described above) don’t work well.

1) Segmentation of acoustic signals from the noise back-
ground: In the second segmentation step, to remove impulse
noise and weak harmonics while leaving strong harmonics
intact, we calculate the average intensity of the remaining
blobs and discard those that have low intensity using a
threshold of 10~6. This value can be tuned to fit different noise
conditions, but we recommend it should not be less than 10~8
or larger than 10~3, corresponding to the sound level of 14dB
(barely audible) to 64dB (vacuum cleaner noise), respectively.

2) Identifying harmonics: We compare the mean intensity
of the projected harmonic with the surrounding area. If the
difference is 4 times or more we consider harmonic found.
Because acoustic energy is in logarithmic scale, even faint
harmonic should have much higher energy than the surround-
ing area, so the threshold that we use is considered “safe” to
be used in various noise condition.

IV. EVALUATION

Figure 5 shows the stages of the proposed process to detect
harmonic syllables. Part a) shows the spectrogram of the
original audio from the LifeCLEF’15 competition training set
(Media ID#13439). We use it here for demonstration because it
contains multiple birds singing simultaneously, strong narrow-
band noise (5-7kHz) and strong bursts of wide-band noise
localised in time (at 4.1s and 5.6s).

Part b) shows the mask that is the result of section III-B -
it mostly contains the blobs corresponding to each syllable’s
fundamental frequencies that mostly have been segmented
from each other (the graphic makes it hard to see which blobs
are still connected but the colors in part d) of the figure should
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Fig. 5. Stages of the proposed syllable detection process. (a) Original
spectrogram. (b) After pre-processing according to the proposed algorithm:
the remaining blobs are mostly fundamental frequencies. (c) The projection
map that is used to find harmonics. (d) the syllables (with different colours)
as detected by the propsed algorithm.

make it clear). As you can observe, none of the strong localised
noise has been detected as a region of interest, however, there
are still some smaller blobs that correspond to harmonics,
which get successively removed in the next stage.

Part c) shows the regions of interest where we perform the
search for the harmonics. Part d) shows the final result where
each detected syllable has been highlighted with a different
colour. As you can see, the algorithm is very successful at
identifying most harmonics, even if they are barely visible in
the original spectrogram. It is also successful at segmenting
syllables from each other, even syllables that clearly overlap
in both, time and frequency — see syllables at 2.7s, 3-5s and
around 6s marks. However, the method is not 100% proof and
fails to segment neighbouring syllables between 3 and 4s that
have strong overlap of the fundamentals and similarly at 2s
mark.

To evaluate our algorithm, we selected a number of record-
ings from the training set of BirdCLEF’16 competition. This
dataset contains recordings of 999 species. We select one to
two recordings of the 10 most prevalent species (having the

TABLE I
EVALUATION OF THE PROPOSED ALGORITHM AGAINST MEDIAN CLIPPING

Assessment Median Clipping  The proposed algorithm
Correct 32.4% 70.32%

Partial 30.75% 11.71%

Miss 13.79% 2.73%

False Positive 11 83

most number of recordings). In total, we select 16 recordings'
containing 149 syllables (by visual inspection) of different
types. The selected recordings are relatively short (ranging
from 1.58 to 4.95 seconds) and contain little man-made noise
(e.g. camera shutter, human chatting). We visually compare
the result of our algorithm against Median Clipping according
to the latest published algorithm ([20]) using the following
assessment criteria:

o Fraction of syllables segmented correctly. A correct seg-
ment must contain the fundamental frequency and most
visible harmonics

o Fraction of syllables partial segmented. This counts the
number of syllables that are broken into parts. E.g. if a
syllable containing 5 harmonics is detected as 2,3,4 or 5
separate syllables, then it counts as one partial segment.

o Fraction of syllables completely missed

o Number of false positive

The evaluation result is given in table I. Our algorithm
correctly segments more than double the number of syllables
compared to that of Median Clipping (70% vs 32%). We also
reduce the number of partial segmentation by three-folds (12%
vs 31%) and improve the number of misses five-fold (3%
vs 14%). However, the proposed algorithm results in a large
number of false positives (83 vs 11). Upon examination, we
found that these are the result of removing pixels from the
segmentation mask to prevent harmonics from being processed
as separate syllables. In some cases the remaining pixels of a
harmonic form a blob big enough to be qualified for processing
as a different fundamental frequency blob. While sometimes
this is necessary in case of vocalisation overlap in both time
and frequency, the other times it is best to simply discard all
broken parts of a harmonics, at the cost of potentially removing
genuine fundamental frequency blobs. Before we can find a
way to resolve this problem, the trade-off is what users of this
algorithm have to make.

V. CONCLUSION AND FUTURE WORK

Removing technical constraints opens up possible ways to
study bird vocalisations in more details. In this paper, we
identify one of the problems that still persists in analysing
birdsongs recordings — lack of a robust automatic segmentation
methods that work in noisy condition and in the presence of
overlapping sounds. We propose such segmentation method
by combining the knowledge of acoustic signal processing

IMedia IDs: 11022, 11554, 12326, 13311, 13674, 8630, 9446, 19120,
20378, 20462, 21152, 21587, 25197, 25646, 30650, 32664



and image processing techniques. We showcase our method’s
ability to precisely segment out syllables in noisy environment
with overlapping vocalisations, including associating harmon-
ics with the fundamental for each syllable. We also evaluate
our algorithm against Median Clipping and find that our
method is far more effective in segmenting syllables correctly
(separating overlapping syllables and picking out harmonics
as part of the syllable). However, the number of false positive
results is one area that needs improvement, which we set out
here as our immediate future work.
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